


高阳
清华大学交叉信息研究院助理教授, 千寻智能联合创始人
高阳,清华大学交叉信息研究院助理教授,主要研究计算机视觉与机器人学。此前,他在美国加州大学伯克利分校获得博士学位,师从Trevor Darrell教授。他还在加州伯克利大学与Pieter Abbeel等人合作完成了博士后工作。在此之前,高阳从清华大学计算机系毕业,与朱军教授在贝叶斯推理方面开展了研究工作。他在2011-2012年在谷歌研究院进行了自然语言处理相关的研究工作、2016年在谷歌自动驾驶部门Waymo的相机感知团队工作,在2018年与Vladlen Koltun博士在英特尔研究院在端到端自动驾驶方面进行了研究工作。高阳在人工智能顶级会议NeurIPS,ICML,CVPR,ECCV,ICLR等发表过多篇学术论文,谷歌学术引用量超过2000次。


赵行
清华大学·交叉信息研究院助理教授, 博士生导师, 星海图联合创始人
赵行,现任清华大学交叉信息研究院助理教授,博士生导师。他的主要研究兴趣包括计算机视觉和听觉,多模态机器学习,自动驾驶等机器人应用。在此之前,赵行在麻省理工学院取得了博士学位,后于谷歌无人车项目Waymo担任研究科学家。赵行博士的多模态机器学习相关的工作曾被多家主流科技媒体报道,如BBC, NBC, 麻省理工科技评论等。他的工作获得了2015年ICCP最佳论文奖。他本人入选了2020年福布斯中国U30科学精英榜。


杨耀东
北京大学人工智能研究院助理教授, 灵初智能首席科学家
杨耀东博士,北京大学人工智能研究院助理教授(博雅学者)、北大元培“通班”2022级班主任。国家人社部高层次留学人才、国家优青(海外)、中国科协青年托举计划获得者。
研究方向为智能体安全交互与价值对齐,科研领域涵盖强化学习、AI对齐、具身智能。发表AI领域顶会顶刊论文一百余篇,谷歌引用近万次,2022年以来位列CSRanking北京大学AI+ML方向学者第一位。
曾获ICCV’23最佳论文奖入围、CoRL’20最佳系统论文奖、AAMAS’21最具前瞻性论文奖、麻省科技评论AI100青年、WAIC’22云帆奖璀璨明星、ACM SIGAI China新星奖。带领华人团队研发多智能体强化学习算法首登Nature Machine Intelligence,碳材料大模型Carbon Copilot发表于Cell子刊Matter,主导Baichuan2、鹏城脑海33B、香港HKGAI大模型对齐工作,曾获NeurIPS’22 机器人灵巧操作比赛冠军。央视一套《焦点访谈》、央视四套《深度国际》、新华网、Financial Times、麻省科技评论报道。现任ICML、ICLR、NeurIPS、AAAI、IJCAI、AAMAS、IROS 领域主席,《Transactions on Machine Learning Research》《Neural Network》执行编委。主持国自然、科技部、北京市科委、校企联合实验室等课题三十余项。曾任伦敦国王大学助理教授、华为英国研究所主任研究员、美国国际集团(AIG)科学部高级经理。
Yaodong is a machine learning researcher with ten-year working experience in both academia and industry of finance/high-tech companies. Currently, he is an assistant professor at King's College London. His research is about reinforcement learning and multi-agent systems. He has maintained a track record of more than forty publications at top conferences/journals, along with the best system paper award at CoRL 2020 (first author) and the best blue-sky paper award at AAMAS 2021 (first author). Before KCL, he was a principal research scientist at Huawei UK where he headed the multi-agent system team in London, working on autonomous driving applications. Before Huawei, he was a senior research manager at AIG, working on AI applications in finance. He holds a Ph.D. degree from University College London, an M.Sc. degree from Imperial College London and a Bachelor degree from University of Science and Technology of China.


马道林
上海交通大学船建学院长聘教轨副教授


叶琦
浙江大学控制科学与工程学院百人计划研究员 & 博士生导师
2020年10月底加入浙江大学控制科学与工程学院、工业控制研究所孙优贤院士、陈积明教授的“网络传感与控制”课题组,聘为浙江大学“百人计划”研究员,博士生导师。在加入浙大之前,她于2011年在北京师范大学获得本科学位,2014年在清华大学获得硕士学位,2019年在英国帝国理工学院获得博士学位(导师Tae-kyun Kim)。2019年1月加入英国剑桥微软Mixed Reality & AI Lab,从事3D人体重建和跟踪、VR/AR相关的研究和开发工作,参与了微软新一代增强现实眼镜HoloLens2手势跟踪算法开发,主要合作者Andrew Fitzgibbon,Jamie Shotton,Toby Sharp, Tom Cashman等。
叶琦博士是浙江大学终身教授,曾任微软剑桥混合现实与人工智能实验室研究员。她拥有帝国理工学院博士学位、清华大学硕士学位和北京师范大学学士学位。她的研究方向为计算机视觉、计算机图形学和机器人技术的交叉领域,尤其关注3D视觉和嵌入式人工智能。
目前的研究方向包括交互场景和手-物体三维重建、主动视觉、多视角多模态感知、灵巧机器人操作等。相关研究成果已发表于计算机视觉和机器人领域的顶级会议和期刊,例如TPAMI、ECCV、CVPR、ICCV、RAL、ICRA、IROS等。


邵林
Assistant Professor in the Department of Computer Science at the NUS
Lin Shao is an Assistant Professor in the Department of Computer Science at the National University of Singapore (NUS), School of Computing. His research interests lie at the intersection of Robotics and Artificial Intelligence. His long-term goal is to build general-purpose robotic systems that intelligently perform a diverse range of tasks in a large variety of environments in the physical world. Specifically, his group is interested in developing algorithms and systems to provide robots with the abilities of perception and manipulation.
He is a co-chair of the Technical Committee on Robot Learning in the IEEE Robotics and Automation Society and serves as the Associated Editor at ICRA 2024. His work received the Best System Paper Award finalist at RSS 2023. Previously, he received his PhD at Stanford University, advised by Jeannette Bohg and co-advised by Leonidas J. Guibas. He received his BS in Geochemistry from Nanjing University.


林倞
中山大学计算机学院教授, 国家杰出青年基金获得者, Fellow of IAPR/IET, 曾任商汤科技首席研发总监/研究院执行院长
国家杰出青年基金获得者,Fellow of IAPR/IET,曾任商汤科技首席研发总监/研究院执行院长。长期从事多模态人工智能、机器学习等领域的应用基础研究,作为首席科学家/项目负责人,承担国家2030科技创新重大项目,入选国家万人计划青拔人才;曾带领商汤科技研发团队搭建大规模AI基础设施,开拓新兴行业。在国际顶级学术期刊和会议发表论文300余篇,论文被引用近3万次(谷歌学术统计),多次入选全球高被引学者榜单;获权威期刊Pattern Recognition年度最佳论文奖,多媒体计算旗舰会议ICME最佳论文钻石奖,计算机视觉旗舰会议ICCV最佳论文奖提名;获中国图像图形学会科学技术一等奖、吴文俊人工智能自然科学奖,省级自然科学一等奖;指导博士生(梁小丹、王可泽等)获得CCF优秀博士论文奖、ACM China优秀博士论文奖及CAAI优秀博士论文奖。(曾)担任知名期刊IEEE Trans. Human-Machine Systems, IEEE Trans. Multimedia, IEEE Trans. Neural Networks and Learning Systems 编委 (Associate Editor),十余次担任IEEE CVPR、ICCV、NeurIPS、KDD、ACM Multimedia 等国际会议的领域主席。


段楠
京东探索研究院视觉与多模态实验室负责人
Dr. Nan Duan is the head of the Vision and Multimodal Lab at JD Explore Academy, where he leads a research team focused on vision and multimodal foundation models. Prior to this, he served as the Technical Fellow at StepFun (2024-2025) and as a Senior Principal Researcher and Research Manager in the Natural Language Computing Group at Microsoft Research Asia (2012-2024). Dr. Duan is a world-renowned expert in natural language processing (NLP), code intelligence, multilingual multimodal foundation models, and AI agents. He has authored over 200 research papers in top-tier conferences and journals, accumulating more than 27,000 citations (h-index 74) and holds over 20 patents. His contributions to the field have been recognized with several prestigious awards, including the Runner-Up Best Paper Award at NeurIPS 2024 and the Best Demo Award at CVPR 2022. He is an adjunct professor and Ph.D. supervisor at the University of Science and Technology of China, Xi’an Jiaotong University, and Tianjin University. Dr. Duan earned his B.S. and Ph.D. in Computer Science from Tianjin University in 2004 and 2011, respectively. In 2019, he was named the CCF-NLPCC Distinguished Young Scientist for his contributions to NLP, and in 2023, he was listed among the DeepTech Intelligent Computing Innovators in China for his work on AI foundation models.
段楠博士,现任京东探索研究院视觉与多模态实验室负责人,带领研究团队研发视觉和多模态基础模型。此前,他曾任阶跃星辰Technical Fellow(2024-2025)和微软亚洲研究院自然语言计算团队资深首席研究员和研究经理(2012-2024)。段博士是自然语言处理(NLP)、代码智能、多语言多模态基础模型和AI智能体领域的世界知名专家。他在顶级会议和期刊上发表了超过200篇研究论文,累积引用超过27,000次(h-index 74),并拥有20多项专利。他在该领域的贡献得到了多个重要奖项的认可,包括2024年NeurIPS最佳论文亚军奖和2022年CVPR最佳演示奖。段博士是中国科学技术大学、西安交通大学和天津大学的兼职教授及博士生导师。段博士于2004年和2011年分别获得天津大学计算机科学学士和博士学位。2019年,他因在自然语言处理领域的贡献被评为CCF-NLPCC杰出青年科学家,2023年,他因在人工智能基础模型方面的贡献被列为中国DeepTech智能计算创新人物之一。


张伟楠
Department of Computer Science & Engineering Shanghai Jiao Tong University
张伟楠博士现任上海交通大学计算机系教授、博士生导师、副系主任,科研领域包括强化学习和数据科学,相关研究成果在CCF-A类国际会议和期刊上发表100余篇学术论文,谷歌学术引用2万余次,爱思唯尔中国高被引学者,获得5个最佳论文奖项,出版教材《动手学强化学习》和《动手学机器学习》。张伟楠长期担任NeurIPS、ICML、ICLR、KDD等会议的领域主席和TPAMI、FCS等期刊的编委,作为负责人承担国家自然科学基金优秀青年项目和科技部2030新一代人工智能重大项目课题,入选中国科协青年人才托举工程和上海市科委英才扬帆计划,获得吴文俊人工智能优秀青年奖和达摩院青橙奖。张伟楠于2011年获得上海交通大学计算机系ACM班学士学位,于2016年获得伦敦大学学院计算机系博士学位。
Weinan Zhang is now a professor at the department of computer science and engineering, Shanghai Jiao Tong University. His research interests include reinforcement learning and data science with various real-world applications of robotic control, game AI, recommender systems, etc. He has published over 200 research papers at prestigious international conferences and journals, accumulating over 20k citations on Google Scholar, been selected as Elsevier China Highly Cited Researcher. He has been serving as an area chair at ICML, NeurIPS, ICLR, KDD, etc. and an associate editor at TPAMI and FCS. He was granted the ACM Rising Star Award 2017 and the Alibaba DAMO Young Scholar Award 2018. His research won five best paper awards at international conferences and workshops, including the Best Paper Honorable Mention Award at SIGIR 2017 and the Best System Paper Award at CoRL 2020. Weinan earned his Ph.D. from the Computer Science Department of University College London in 2016 and his B.E. from the ACM Honored Class of Shanghai Jiao Tong University in 2011.


梁小丹
中山大学教授, 博导
梁小丹,中山大学教授,博导,逸仙学者,2016年博士毕业于中山大学计算机学院,2014-2016年于新加坡国立大学访问学者,2016年-2018.10年,在美国卡内基梅隆大学(CMU)机器学习系做博士后研究(合作导师:Eric P. Xing教授),2018年底加入中山大学智能工程学院,2024年担任中山大学通用具身智能中心主任,中山大学人机物智能融合实验室(https://www.sysu-hcp.net/ )联合负责人。


杨梦月
伦敦大学学院(UCL)博士在读
伦敦大学学院(UCL)博士在读,导师是汪军教授。研究兴趣包括因果表示学习、强化学习和推荐系统,在机器学习领域的顶级会议和期刊上发表多篇一作研究成果。


李弘扬
Assistant Professor, HKU Musketeers Foundation Institute of Data Science
Hongyang Li is an Assistant Professor at Musketeers Foundation Institute of Data Science, University of Hong Kong and has led OpenDriveLab (opendrivelab.com) since 2021. His research focus is on autonomous driving and embodied AI. He led the end-to-end autonomous driving project, UniAD and won the IEEE CVPR 2023 Best Paper Award. UniAD has a tremendous impact both in academia and industry, including the recent rollout to customers by Tesla in FSD V12. He created the first large-scale real robot ecosystem, AgiBot World, that systematically investigated the scaling law principles for robotic manipulation. He proposed the bird's-eye-view perception work, BEVFormer, that won Top 100 AI Papers in 2022. He served as Area Chair for CVPR, NeurIPS (including 2023 Notable AC), ICLR, ICCV, ICML, RSS, referee for Nature Communications, Guest Editor at Automotive Innovations. He is the Working Group Chair for IEEE Standards P3474 under Vehicular Technology Society. He is the Senior Member of IEEE, CCF and CSIG. He is the recipient of China AI Wu Wen Jun Early Career Award 2024.
李弘扬,香港大学数据科学研究院助理教授,OpenDriveLab团队(opendrivelab.com)联合创始人。研究方向为端到端智能系统在机器人、自动驾驶的应用。他主导的端到端自动驾驶方案UniAD于2022年提出,获IEEE CVPR 2023最佳论文奖。UniAD等系列工作产生了明显的社会经济效益,包括特斯拉于2023年推出的端到端FSD。他构造的超大规模具身智能训练场AgiBot World,是业界首个百万真机、千万仿真数据集,系统研究具身Scaling Law方法论。他提出的俯视图感知方法BEVFormer,获2022年百强影响力人工智能论文榜单,成为业界广泛使用的纯视觉检测基准。他多次担任CVPR、NeurIPS、ICLR、ICCV、ICML、RSS等国际会议领域主席(AC),其中获得NeurIPS 2023 Notable AC。他是《自然·通讯》的审稿人、期刊《Automotive Innovations》客座编委。IEEE、CCF、CSIG高级会员、IEEE汽车委员会自动驾驶国际标准工作组组长。荣获2024年中国吴文俊人工智能青年科技奖、2023年上海市东方英才计划领军项目。