


杨建益
山东大学特聘教授, 博导, 国家杰出青年科学基金获得者
2011年博士毕业于新加坡南洋理工大学,2011-2014在美国密歇根大学从事博士后研究工作。2015年初加入南开大学数学科学学院,担任副教授职位,2017年底破格晋升为教授。研究方向为生物信息学,主要研究内容包括蛋白质结构与功能预测,深度学习算法的应用等。已在Nature Methods等期刊发表SCI论文40多篇,其中一作或通讯作者论文26篇。论文被SCI他引2500多次,3篇论文入选ESI高被引论文。主持国家自然科学基金项目2项,2018年获得霍英东教育基金会青年教师基金资助。


郑伟
南开大学统计与数据科学学院教授
郑伟,南开大学统计与数据科学学院教授,国家级青年人才,南开大学百名青年学科带头人,传染病溯源预警与智能决策全国重点实验室成员。蛋白质预测结构文件存储格式ModelCIF的国际标准制定委员会委员。该委员会成员还包括诺贝尔化学奖得主DeepMind课题组、诺贝尔化学奖得主华盛顿大学David Baker教授课题组。
研究领域为基于深度学习及统计能量函数的生物分子及其互作的结构预测,郑伟主持开发的C-I-TASSER、C-QUARK、D-I-TASSER、DMFold等蛋白质单体结构预测算法、蛋白质-蛋白质互作复合物结构预测算法、核酸-核酸互作复合物结构预测算法、蛋白质-核酸复合物结构预测算法、生物分子多构象预测算法等,累计获得被誉为“蛋白质结构预测领域的奥林匹克竞赛”的国际赛事(CASP)的十项冠军,领先包括AlphaFold2、AlphaFold3在内的全球80余个学术界及工业界的课题组。5次受邀在世界蛋白质结构预测大赛赛后国际会议、世界生物医药与人工智能大会做特邀报告。累计在Nature Biotechnology、Nature Methods、Nature Communications、Nature Protocols、Science Advances、Nature Computational Science、Nucleic Acids Research、PNAS等高水平SCI期刊发表文章50余篇。据Google Scholar记录,郑伟的相关研究成果已累计获得3400余次引用。研究成果受诺奖得主、Nature、纽约时报等媒体报道,阅读量超过百万次。担任SCI期刊Molecules杂志特约编辑及Nature Communications、Nature Machine Intelligence、Nature Computational Science等SCI期刊审稿人。郑伟主导开发的算法已经累计服务了超过100个国家的近10万名用户。主持并参与了多个国家级、天津市级人才项目及重点交叉项目。


程建林
Curators' Distinguished Professor, AAAS Fellow, Director of Bioinformatics and Machine Learning Lab (BML)
Jianlin (Jack) Cheng is a Curators’ Distinguished Professor in the Department of Electrical Engineering and Computer Science at the University of Missouri. He received his PhD in information and computer science from the University of California, Irvine in 2006. His research is focused on developing machine learning and artificial intelligence (AI) methods and tools for big biomedical data analysis. His research group has developed numerous bioinformatics tools for analyzing protein structure and function, biological networks, and 3D genome structure, which are used by scientists around the world. His research has been supported by the National Institutes of Health (NIH), the National Science Foundation (NSF), and the U.S. Department of Energy (DOE). Cheng was a recipient of the NSF CAREER award and the MU College of Engineering’s junior and senior faculty research awards.


仉尚航
北京大学计算机学院助理教授, 北京智源人工智能研究员具身多模态大模型中心负责人
仉尚航现为北京大学计算机学院任长聘系列助理教授(研究员),博士生导师。于2018年博士毕业于美国卡内基梅隆大学,后于2020年初加入加州大学伯克利分校 Berkeley AI Research Lab (BAIR) 从事博士后研究。其研究方向为开放环境泛化机器学习理论与系统,同时在计算机视觉和类脑智能方向拥有丰富研究经验。在人工智能顶级期刊和会议上发表论文50余篇,并申请5项美中专利。荣获世界人工智能顶级会议AAAI’2021 最佳论文奖,该工作曾列世界最大学术源代码仓库Trending Research 榜单第一,受到十余家媒体报道推广,开源代码被访问7万余次、2600余次Star。作为编辑和作者由Springer Nature出版英文书籍《Deep Reinforcement Learning》,至今电子版全球下载量超十二万次,入选中国作者年度高影响力研究精选,并出版中文译本。Google Scholar引用数3100次,h-index 23, i10-index 35。于2018年入选美国“EECS Rising Star”,曾获得Adobe学术合作基金,Qualcomm创新奖提名。获国际人脑多模态计算模型响应预测竞赛第一名,NeurIPS 2021 Visual Domain Adaptation 竞赛第三名。曾多次在国际顶级会议NeurIPS、ICML上组织Workshop,多次作为国际顶级期刊和会议的审稿人或程序委员,担任AAAI 2022/2023 高级程序委员。
Dr. Shanghang Zhang is a Tenure Track Assistant Professor at the School of Computer Science, Peking University. She has been the postdoc research fellow at Berkeley AI Research Lab (BAIR), UC Berkeley. Her research focuses on OOD Generalization that enables the machine learning systems to generalize to new domains, categories, and modalities using limited labels, with applications to autonomous driving and robotics, as reflected in her over 50 papers on top-tier journals and conference proceedings (Google Scholar Citations: 4321, H-index: 28, I10-index: 38). She has also been the author and editor of the book “Deep Reinforcement Learning: Fundamentals, Research and Applications” published by Springer Nature. This book is selected to Annual High-Impact Publications in Computer Science by Chinese researchers and its Electronic Edition has been downloaded 150,000 times worldwide. Her recent work “Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting” has received the AAAI 2021 Best Paper Award. It ranks the 1st place of Trending Research on PaperWithCode and its Github receives 3,300+ Stars.
Shanghang has been selected to “2018 Rising Stars in EECS, USA”. She has also been awarded the Adobe Academic Collaboration Fund, Qualcomm Innovation Fellowship (QInF) Finalist Award, and Chiang Chen Overseas Graduate Fellowship. Her research outcomes have been successfully productized into real-world machine learning solutions and filed 5 patents. Dr. Zhang has been the chief organizer of several workshops on ICML/NeurIPS, and the special issue on ICMR. Dr. Zhang received her Ph.D. from Carnegie Mellon University in 2018, and her Master's from Peking University.