


杨耀东
北京大学人工智能研究院助理教授, 灵初智能首席科学家
杨耀东博士,北京大学人工智能研究院助理教授(博雅学者)、北大元培“通班”2022级班主任。国家人社部高层次留学人才、国家优青(海外)、中国科协青年托举计划获得者。
研究方向为智能体安全交互与价值对齐,科研领域涵盖强化学习、AI对齐、具身智能。发表AI领域顶会顶刊论文一百余篇,谷歌引用近万次,2022年以来位列CSRanking北京大学AI+ML方向学者第一位。
曾获ICCV’23最佳论文奖入围、CoRL’20最佳系统论文奖、AAMAS’21最具前瞻性论文奖、麻省科技评论AI100青年、WAIC’22云帆奖璀璨明星、ACM SIGAI China新星奖。带领华人团队研发多智能体强化学习算法首登Nature Machine Intelligence,碳材料大模型Carbon Copilot发表于Cell子刊Matter,主导Baichuan2、鹏城脑海33B、香港HKGAI大模型对齐工作,曾获NeurIPS’22 机器人灵巧操作比赛冠军。央视一套《焦点访谈》、央视四套《深度国际》、新华网、Financial Times、麻省科技评论报道。现任ICML、ICLR、NeurIPS、AAAI、IJCAI、AAMAS、IROS 领域主席,《Transactions on Machine Learning Research》《Neural Network》执行编委。主持国自然、科技部、北京市科委、校企联合实验室等课题三十余项。曾任伦敦国王大学助理教授、华为英国研究所主任研究员、美国国际集团(AIG)科学部高级经理。
Yaodong is a machine learning researcher with ten-year working experience in both academia and industry of finance/high-tech companies. Currently, he is an assistant professor at King's College London. His research is about reinforcement learning and multi-agent systems. He has maintained a track record of more than forty publications at top conferences/journals, along with the best system paper award at CoRL 2020 (first author) and the best blue-sky paper award at AAMAS 2021 (first author). Before KCL, he was a principal research scientist at Huawei UK where he headed the multi-agent system team in London, working on autonomous driving applications. Before Huawei, he was a senior research manager at AIG, working on AI applications in finance. He holds a Ph.D. degree from University College London, an M.Sc. degree from Imperial College London and a Bachelor degree from University of Science and Technology of China.


许华哲
清华大学交叉信息研究院助理教授
博士毕业于美国加州大学伯克利分校,博后曾就职于美国斯坦福大学。研究方向为具身智能与机器人学、强化学习、模仿学习等。围绕具身人工智能的关键环节,系统性地研究了视觉深度强化学习、模仿学习和机器人操作,对解决具身人工智能领域中数据效率低和泛化能力弱等核心问题做出多项贡献。发表顶级会议论文五十余篇,代表性工作曾被MIT Tech Review,Stanford HAI等媒体报道。
I am a Tenure-Track Assistant Professor at Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University. I am leading the Tsinghua Embodied AI Lab (TEA Lab, logo), where we build robots and then bring intelligence to robots.
I was a postdoctoral researcher at Stanford Vision and Learning Lab (SVL) advised by Prof. Jiajun Wu. I obtained my Ph.D. in Berkeley AI Research (BAIR) advised by Prof. Trevor Darrell. I obtained my bachelor degree from Tsinghua University (major in EE, minor in Management).
My research focuses on modeling the dynamics of the world, leveraging/finding human priors for policy learning, and further enabling algorithms to learn in a sample-efficient manner and generalize to unseen scenarios. I am also interested in solving complex real robot applications with deep learning and reinforcement learning.


郝建业
天津大学软件学院副教授 , 华为诺亚方舟决策推理实验室主任
郝建业博士,现任天津大学软件学院副教授。香港中文大学(CUHK)计算机科学与工程专业博士,麻省理工学院(MIT)计算机科学与人工智能实验室(CSAIL)博士后研究员。
郝建业教授主持参与了国内、香港及国际地区科研项目10余项, 与国际上多个顶尖科研团队(包括麻省理工学院(MIT), 帝国理工学院,香港中文大学,新加坡国立大学等)具有良好的长期合作关系, 并取得了多项国际领先的研究成果。在人工智能领域具有丰富的研究经验,目前已在多智能体系统、 人工智能、 软件工程等领域的多个顶级国际期刊(Journal of Autonomous Agents and Multiagent Systems (JAAMAS), ACM Transactions on Autonomous and Adaptive Systems(TAAS)等) 和国际会议 (IJCAI, AAMAS, FSE, ICSE等)上发表论文30余篇,专著一部。
郝建业教授获得过多个香港地区和国际学术奖项(包括ANAC国际谈判比赛2012年度冠军、2015年度亚军、澳大利亚教育部Endeavor Fellowship、香港中文大学全球杰出研究者)。同时担任多个顶级期刊(包括JAAMAS, TAAS,TOSEM等)审稿人,美国国家科学基金委物联网项目评审专家。


林倞
中山大学计算机学院教授, 国家杰出青年基金获得者, Fellow of IAPR/IET, 曾任商汤科技首席研发总监/研究院执行院长
国家杰出青年基金获得者,Fellow of IAPR/IET,曾任商汤科技首席研发总监/研究院执行院长。长期从事多模态人工智能、机器学习等领域的应用基础研究,作为首席科学家/项目负责人,承担国家2030科技创新重大项目,入选国家万人计划青拔人才;曾带领商汤科技研发团队搭建大规模AI基础设施,开拓新兴行业。在国际顶级学术期刊和会议发表论文300余篇,论文被引用近3万次(谷歌学术统计),多次入选全球高被引学者榜单;获权威期刊Pattern Recognition年度最佳论文奖,多媒体计算旗舰会议ICME最佳论文钻石奖,计算机视觉旗舰会议ICCV最佳论文奖提名;获中国图像图形学会科学技术一等奖、吴文俊人工智能自然科学奖,省级自然科学一等奖;指导博士生(梁小丹、王可泽等)获得CCF优秀博士论文奖、ACM China优秀博士论文奖及CAAI优秀博士论文奖。(曾)担任知名期刊IEEE Trans. Human-Machine Systems, IEEE Trans. Multimedia, IEEE Trans. Neural Networks and Learning Systems 编委 (Associate Editor),十余次担任IEEE CVPR、ICCV、NeurIPS、KDD、ACM Multimedia 等国际会议的领域主席。


张伟楠
Department of Computer Science & Engineering Shanghai Jiao Tong University
张伟楠博士现任上海交通大学计算机系教授、博士生导师、副系主任,科研领域包括强化学习和数据科学,相关研究成果在CCF-A类国际会议和期刊上发表100余篇学术论文,谷歌学术引用2万余次,爱思唯尔中国高被引学者,获得5个最佳论文奖项,出版教材《动手学强化学习》和《动手学机器学习》。张伟楠长期担任NeurIPS、ICML、ICLR、KDD等会议的领域主席和TPAMI、FCS等期刊的编委,作为负责人承担国家自然科学基金优秀青年项目和科技部2030新一代人工智能重大项目课题,入选中国科协青年人才托举工程和上海市科委英才扬帆计划,获得吴文俊人工智能优秀青年奖和达摩院青橙奖。张伟楠于2011年获得上海交通大学计算机系ACM班学士学位,于2016年获得伦敦大学学院计算机系博士学位。
Weinan Zhang is now a professor at the department of computer science and engineering, Shanghai Jiao Tong University. His research interests include reinforcement learning and data science with various real-world applications of robotic control, game AI, recommender systems, etc. He has published over 200 research papers at prestigious international conferences and journals, accumulating over 20k citations on Google Scholar, been selected as Elsevier China Highly Cited Researcher. He has been serving as an area chair at ICML, NeurIPS, ICLR, KDD, etc. and an associate editor at TPAMI and FCS. He was granted the ACM Rising Star Award 2017 and the Alibaba DAMO Young Scholar Award 2018. His research won five best paper awards at international conferences and workshops, including the Best Paper Honorable Mention Award at SIGIR 2017 and the Best System Paper Award at CoRL 2020. Weinan earned his Ph.D. from the Computer Science Department of University College London in 2016 and his B.E. from the ACM Honored Class of Shanghai Jiao Tong University in 2011.


俞扬
Professor in the School of Artificial Intelligence, Nanjing University, China.
Yang Yu is a Professor in the School of Artificial Intelligence, Nanjing University, China. His research interest is in machine learning, focusing on real-world reinforcement learning and general intelligence for decision-making. He has published more than 40 papers in Artificial Intelligence, TPAMI, TKDE, NeurIPS, IJCAI, AAAI, KDD, etc. He has been granted several conference best paper awards including IDEAL'16, GECCO'11 (theory track), PAKDD'08, etc. He was in the Champion Team of 2021 ICAPS L2RPN Challenge with Trust, 2018 OpenAI RetroContest, and the Grand Champion Team of PAKDD 2006 Data Mining Competition. He received CCF-IEEE Early Career Award in 2020, was recognized as one of the “AI’s 10 to Watch” by IEEE Intelligent Systems in 2018, and received the PAKDD Early Career Award in 2018. He was invited to give an Early Career Spotlight Talk in IJCAI'18. He has served as an Area Chair of NeurIPS, IJCAI, AAAI, and ACML for multiple years. He was a Publicity Co-chair of IJCAI'16/17 and IEEE ICDM'16; a Workshop Co-chair of ACML'16 and PRICAI’18. He co-founded the International Conference on Distributed Artificial Intelligence (DAI) and the Asian Workshop on Reinforcement Learning (AWRL).